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Abstract

We study the problem of optimal wealth allocation across independent binary options with
known payouts, aiming to maximize log utility under practical constraints. This general
framework arises in settings such as prediction markets (e.g., Kalshi and Polymarket),
financial event contracts (e.g., Nadex), and sports betting (e.g., Draftkings and FanDuel).
The Kelly Criterion provides a classical solution for the bet sizing of a single binary option,
and numerous papers have explored extensions to multiple binary options. Our work expands
on this body of research by investigating how to incorporate combinatorial constraints into the
model, including limits on the number of binary options to select in a portfolio, a requirement
that arises in many settings. These constraints considerably increase the computational
complexity of the problem, thereby necessitating advanced solution methodologies. To
address this challenge, we develop a logic-based Benders decomposition algorithm that
provides a scalable and computationally efficient solution framework. Although broadly
applicable, we focus on sports betting due to its market scale and unique inclusion of parlay
options. We also study how sportsbooks can make slight modifications to parlay pricing so
that optimal allocations do not include parlay options, even though such options may remain
attractive to bettors.

1 Introduction

Optimal investment across uncertain binary outcomes with known payoffs is a core problem in decision theory,
operations research, and financial optimization. From elections to geopolitical events, economic reports, or
sports, individuals increasingly wager capital on binary outcomes. These are examples of binary options,
offering fixed payouts for correct predictions and loss of stake otherwise. Given a finite bankroll and many
such opportunities, how should a trader—or more broadly, a decision-maker—allocate wealth to maximize
long-term returns?
This problem naturally arises in prediction markets and event-based exchanges like Kalshi and Polymarket,
where users bet on outcomes ranging from inflation to elections (see Figure 1). A related platform is Nadex,
a regulated exchange offering binary contracts that pay $0 or $100 depending on the outcome. Contracts
trade between 0 and 100, reflecting market-implied probabilities.
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Figure 1: Example prediction markets for binary-outcome wagering offered on Kalshi and Polymarket offered at
6:30AM on July 30, 2025.

Another rapidly growing application is sports betting, a rich domain due to its large market size, high-quality
data, and variety of wagering options. Platforms such as FanDuel and DraftKings offer thousands of binary
options daily, including point spreads, moneylines, and player props. Sports betting provides a particularly
interesting setting for inquiry, study, and investigation for at least three reasons: market inefficiency, parlay
options, and combinatorial requirements.

1. Market Inefficiency: Sports betting markets remain partially inefficient (Birge et al. 2021, Simon
2024), allowing informed bettors to exploit mispriced bets with positive expected return on investment
(ROI). A key reason is that sportsbooks do not price bets solely to reflect true event probabilities;
instead, they manage risk and maximize profit by anticipating bettor behavior. For example, lines
may be shaded to exploit public bias (e.g., toward popular teams) or to balance exposure across
outcomes, not eliminate arbitrage. Odds also move in response to betting volume rather than new
information, creating transient mispricings. These dynamics—along with latency in line updates and
variation across sportsbooks—lead to persistent deviations from efficient pricing. See Levitt (2004),
Durand et al. (2021), Moskowitz (2021), Simon (2024) for related evidence.

2. Parlay Options: A key feature distinguishing sports betting from other binary-option settings is the
widespread use of parlays—bundles of multiple wagers that pay only if all legs win. While appealing
to bettors for their high payouts, parlays pose major modeling challenges due to exponentially many
combinations and interdependent outcomes.
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3. Combinatorial Requirements: Although bettors face thousands of opportunities, they are often
limited in how many bets they can place. Parlay bets further increase complexity by introducing
exponentially many combinations. Additionally, most platforms lack API access, forcing manual and
expedient bet placement. Identifying high-quality portfolios under cardinality constraints is thus a
practical and computational challenge.

In 2024, the total handle (amount wagered) on sports outcomes was estimated at $148.7B (Docsports.com
2025), reflecting how sports betting has growth as a mainstream financial activity (Baker et al. 2024). This
surge has fueled academic interest in several elements related to sports betting. One key focus is, of course,
prediction estimation, which comes with a vast body of work (see, e.g., Horvat and Job (2020) for a survey).
The other major focus is on optimal strategies in various formats, including, for example, March Madness
(Kaplan and Garstka 2001, Decary et al. 2024) and Daily Fantasy Sports (Hunter et al. 2016, Haugh and
Singal 2021, Bergman et al. 2023). Estimates for the total handle for these two sports betting formats for
2025 are $3.1B (American Gaming Association 2025) and $14.29B (Market Research Future 2025). With
parlays accounting for approximately 25% of all wagers (Sayre and Simonetti 2025) (other figures have that
number even higher, for example, Lutz (2024) estimates that parlays make up roughly 70% of all NFL and
NBA bets on FanDuel) the parlay betting handle alone can be approximated at $37.175B annually. These
figures indicate that studying optimal betting strategies for binary options in sports betting, with a focus on
parlays, is more broadly of interest than other games, including March Madness and Daily Fantasy Sports, in
addition to other styles of competition with lower levels of participation, for example in NFL Survivor Pools
(Bergman and Imbrogno 2017, Imbrogno and Bergman 2022).
Selecting the optimal size of a wager involves tradeoffs between expected growth and risk of ruin. The
literature on binary option bet sizing is vast. The Kelly Criterion (Kelly Jr. 1956) prescribes the exact wealth
fraction to wager on a single binary option to maximize long-term growth, and spawned the entire research
area. Despite the simplicity of each individual binary option, the portfolio allocation problem becomes
complex when multiple wagers are available simultaneously.
In the absence of parlays, work on optimizing in the presence of multiple single options began in Breiman
(1961), with numerous modeling and algorithmic contributions and extensions (see for example (Samuelson
1971, Miller 1975, Algoet and Cover 1988, Bell and Cover 1988, MacLean et al. 1992, Whitrow 2007, Thorp
2008, Baker and McHale 2013, Busseti et al. 2016, Rujeerapaiboon et al. 2016, Sun and Boyd 2018, Han
et al. 2019, Mercurio et al. 2020)). As an example, Mercurio et al. (2020) study log optimal betting with
objective function penalties leading to diversification, with application both to binary options in Nadex and
on sports gambling. What this entire body of work does not allow for is the imposition of hard combinatorial
constraints, which is essential in practice when bettors are unable or unwilling to allocate capital across all
available opportunities.
There is a small but important body of work that has explored optimal bet sizing in the presence of parlays
(Grant et al. 2008, 2019). These studies derive closed form expressions for log optimal betting strategies,
but these formulations require simultaneously placing all possible parlay combinations. For instance, if a
bettor identifies 100 profitable individual bets, the optimal strategy would involve placing 2100 − 1 distinct
wagers, an approach that is computationally and operationally infeasible. Moreover, their analysis assumes
that all bets are mutually independent. In practice, sportsbooks may allow parlays involving dependent bets
(e.g., multiple bets within the same game), but the odds in such cases are not multiplicative and often vary
widely. As a result, a more tractable and realistic approach is to extract high-quality portfolios only allowing
a choice for which the collection of bets in the portfolio are all mutually independent.
Our main contributions are as follows. We provide a formal study and analysis of log optimal bet sizing
on binary options in sportsbooks in the presence of parlays and practical constraints. We formulate the
problem as a mixed-integer non-linear optimization model. Our model incorporates combinatorial constraints
to ensure practical feasibility, and allows for dependent binary options bets to be present for consideration,
while enforcing that selected portfolios consist only of mutually independent bets. To solve our model at
scale, we design a logic-based Benders decomposition algorithm that performs efficiently in large instances,
and we show how additional constraints—such as limiting downside risk—can be seamlessly integrated into
the framework. We evaluate our approach on both synthetic and real-world data, using outcome probabilities
derived from a proprietary sports betting model.
Although our work is centered on sports betting, the underlying framework is broadly applicable to other
binary-outcome wagering settings. In particular, our model can easily be adapted to exclude parlay options
entirely, thereby reducing the problem to a setting equivalent to that of other references listed above
(e.g., Mercurio et al. (2020)). The core insight that fuels the algorithm is a provably optimal bound on the
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expected logarithmic growth of wealth for any allocation on any collection of independent binary options,
regardless of whether parlay betting is available. Our approach contributes even to this simplified setting, in
that we introduce the ability to impose combinatorial constraints.
Finally, our analysis also includes an economic examination of sportsbook pricing behavior. We show how
minor reductions in parlay payouts can shift optimal bettor behavior toward single-option wagers, insights
that may inform policy and platform design.
The remainder of the paper is organized as follows. Section 2 introduces the notation and problem scope.
Section 3 formally defines the problem we study. Section 4 presents benchmark methods. Section 5 discusses
structural results. Section 6 introduces our LBBD algorithm. Section 7 presents computational experiments,
and Section 8 analyzes sportsbook parlay pricing. Section 9 concludes.

2 Preliminaries

Sportsbooks (or other exchanges) offer to bettors (or more generally participants) a set of ns single-option
bets, S = {1, 2, . . . , ns}. Each binary option s ∈ S is associated with a future real-world sport event outcome
(or any real-world outcome) Es and has decimal odds (which we will refer to simply as odds or alternatively
price) ds > 1. We assume that Es is a random binary event that is either true or false, which encompasses
a large portion of the betting market. A bettor plays against the sportsbook by selecting an option s and
betting xs on that outcome. If Es = true, the bet is said to be successful, and the bettor receives dsxs

return for a profit of dsxs − xs. If Es = false, the bet is said to be unsuccessful, and the bettor receives
0 return for a profit of −xs. We denote by ps the probability that Es = true, with 0 < ps < 1 to exclude
trivial cases. We let ξ̃s be the Bernoulli random variable indicating if bet s succeeds, i.e., indicating when Es

is true. We can then let ξ̃ =
(
ξ̃1, . . . , ξ̃ns

)
be the associated random vector.

A bettor can also construct a parlay, which is any non-empty subset of single-option bets. Let O(S) := 2S\ {∅}
be the collection of all non-empty subsets of S. For any O ∈ O(S), each s ∈ O is called a leg of the parlay. A
parlay is successful if all of its legs are successful, and it is unsuccessful otherwise. A parlay consisting of only
one single-option bet is equivalent to that single-option bet.
Sportsbooks use algorithms to price constructed parlays. Pricing becomes particularly challenging when the
legs of a parlay are derived from events within the same game—such parlays are referred to as same-game
parlays. Bettors are typically unaware of the specific pricing mechanism employed by the sportsbook for
these types of parlays. Conversely, when the events originate from different games, they are (approximately)
independent, and parlays with independent legs are often priced as the product of the individual odds.
Let H be the set of games indexed by h, and let S(h) denote the set of single-option bets available in game h
(a slight abuse of notation, as S refers to all single options, while S(h) returns those for a specific game). Let
h(s) ∈ H denote the game associated with single-option s. We define the set of independent parlays as:

OI(S) :={O ∈ O(S) : ∀s′, s′′ ∈ O, s′ ̸= s′′ → h(s′) ̸= h(s′′)}.

For every parlay O ∈ OI(S), the odds dO of this parlay is given by dO =
∏
s∈O

ds. Note that if the number of

the legs of a parlay grows very large, a sportbook may deviate from this prescriptive price assignment, but
we will assume for this paper that the prices are assigned as defined above. As with single-option bets, a
wager of xO on independent parlay O results in return dOxO if the option is successful and 0 otherwise, i.e.,
profit dOxO − xO if the option is successful and −xO otherwise.

Let pO be the probability that parlay O is successful, i.e., pO := P
( ⋂

s∈O

Es

)
. For independent parlays,

pO =
∏

s∈O

ps. For parlays that are not independent, the probability pO depends on the correlation between the

events associated with each leg. The expected profit of betting xO on O is pO (dOxO − xO)+(1 − pO) (−xO) =
xO (pOdO − 1) . Therefore, for independent parlay O, we denote the expected net profit (NP) of an independent
parlay as πO := pOdO − 1 and the expected return on investment (ROI) as ρO := 100 (pOdO − 1). A parlay
is said to be profitable if πO > 0. Due to independence, O is profitable if each of its legs is profitable (the
converse is not necessarily true, i.e., there can be options that are profitable with some legs being unprofitable).
For the remainder of the paper, we assume that all single-option bets are profitable (see Table 1 for real-world
examples).
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Table 1 displays two DraftKings single-option bets taken on September 10th, 2024. These probabilities are
taken from a proprietary machine learning model owned by one of the authors. Es indicates the event of
the wager and reads as Player Name (Team) Player Prop-Over/Under Count where Player prop represents
a statistic associated with the respective player, and over/under represent the binary condition defining a
successful single-option bet. The first single-option bet from Table 1 features Bryan Ramos of the Chicago

s Es ds ps ρs (%)
1 Bryan Ramos (Chicago WS)

batter strikeouts-Under 0.5 2.3 0.48 11

2 Joey Gallo (Washington)
Batter singles-Over 0.5 4.2 0.27 15

Table 1: DraftKings single-option bets - 09-10-2024

White Sox facing the Cleveland Guardians. To win the first single-option bet (s = 1), Bryan Ramos must
record fewer than 0.5 strike outs. Similarly, the second single-option bet involves Joey Gallo of the Washington
Nationals, who are playing against the Atlanta Braves. A bettor wins the second single-option bet (s = 2)
if Joey Gallo records at least one single. Since these single-option bets are from different games, they are
independent.
Let O denote the set of single-option bets in a given parlay, with dO, pO, and ρO representing its decimal
odds, success probability, and ROI, respectively. For example, combining the two bets in Table 1 yields a
parlay O = {1, 2} with dO = 4.2 · 2.3 = 9.6, pO = 0.13, and ρO = 27. A parlay succeeds only if all legs win,
making its success probability the product of individual probabilities. While combining bets can increase
ROI, it probability of hitting is diminished.

3 Problem Description

A bettor seeking to maximize long-term wealth (under the assumptions listed below, which are commonly
accepted in the literature) does so by maximizing the geometric mean growth rate, which is equivalent to
maximizing the expected logarithmic growth of wealth. This approach accounts for the compounding effect
of multiple bets and balances risk and reward over time, ensuring the optimal balance between aggressive
betting (for growth) and conservative betting (to avoid ruin). The logarithmic function is particularly useful
because it reflects the diminishing marginal utility of wealth—large losses are more harmful than equivalent
gains are beneficial, which is key to preserving and growing wealth in the long run.
Expected logarithmic growth rate is generally adopted in the literature because, under the following assump-
tions, it translates to maximizing long-term growth rate (e.g., Maclean et al. (2010)):

• Repeated bets: The same bet can be made over and over per decision period;
• Known probabilities: Accurate knowledge of the probability of winning each bet is available;
• Reinvestment: Winnings are reinvested each period; and
• Finite bankroll: The bettor has a limited initial wealth.

We assume that a bettor’s initial wealth is $1. In this way, we can recast seeking xO (in dollar amount) for
every option into finding fO ≥ 0, the fraction of wealth to wager on every option, with the constraint that
the sum of the fractions are less than or equal to 1.
We call f := (fO)O∈OI (S) a (betting) strategy and denote the set of all admissible strategies by F(S) := {f =
(fO)O∈OI (S) | fO ≥ 0 for all O ∈ OI(S) and

∑
O∈OI (S)

fO ≤ 1 − ϵ} where ϵ > 0 is a small constant. Note that

the non-negative constraint on each fO means that the bettor can wager on a single event or parlay, but
cannot “short sell” it; the inequity constraint on the sum of fractions implies that the bettor does not borrow
money to make bets.
Let W (f ; ξ̃) be the random variable for the bettor’s wealth under an admissible strategy f . For brievety, we
denote it as W (f). Since the bettor aims to optimize the expected logarithmic utility of her terminal wealth,
the bettor’s optimization problem is

max
f∈F(S)

E [ln (W (f))] . (LG)
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Dependencies arise not only between single-option bets in the same game, but also across parlays, which
may share legs or reference events from the same game. As a result, even when wagers are placed only on
independent options, expressing LG in terms of probabilities and odds requires conditioning on all possible
outcomes.
To this end, we introduce additional notation to represent the probability that a collection of single-option
bets S′ ⊆ S are successful and the collection of the other single-option bets S \ S′ are unsuccessful. We
denote these probabilities in the following way: for all S′ ⊆ S,

q (S, S′) := P

 ⋂
s∈S′

Es

⋂
s′∈S\S′

Ec
s′

 . (1)

Therefore, we rewrite the problem LG as

max
f≥0

∑
S′⊆S

q (S, S′) ln

1 −
∑

O∈OI (S)

fO +
∑

O∈OI (S′)

fOdO

 subject to
∑

O∈OI (S)

fO ≤ 1 − ϵ. (LG’)

The sum expression in the objective considers all possible outcomes of options, where we sum over all subsets
S′ of S; note that by the definition of q(·) in (1), all single-option bets in S′ are successful, and all the
remaining single-option bets in S \ S′ are unsuccessful. We then take the log of the wealth for that outcome,
where the term 1 −

∑
O∈OI (S)

fO represents the initial wealth less the amount wagered, and
∑

O⊆OI (S′)

fOdO

represents the return from the successful bets that are placed. (Indeed, all single-option bets in S′ are
successful, so are parlays with legs in S′.) The constraints limit the amount wagered to be less than 1-ϵ
(where ϵ > 0 is a small safety margin) and each individual bet to be greater than or equal to 0. In practice
we set ϵ = 0.01 to avoid numerical issues.
A well-known classical result (Kelly Jr. 1956) is that if a bettor is considering just one single-option bet s ∈ S,
the so-called Kelly Criterion

ks := psds − 1
ds − 1 (2)

identifies the optimal bet fraction. By recalling ds > 1 and psds − 1 > 0, we have 0 < ks < 1.
From our real-world data set on MLB betting, which we describe in full detail in Section 7.1, consider
Figures 2a and 2b, which illustrate a wide-range of parlay options as scatter plots. In particular, we take
nine of the most profitable bets, and calculate the probability of each single bet and derived parlay, as well as
the ROI and the expected logarithmic growth rate of each. In these plots, |O| is the size of the parlay, and
we group large parlays to ease of visualization.
These plots reveal that the relationship between ROI and log utility casts the attractiveness of a bet in
very different lights. In terms of ROI, the interaction between probabilities and decimal odds can produce
deceptively high returns, especially for parlays. However, when evaluated through the lens of logarithmic
growth rate, parlays with only a few legs may actually be more appealing than larger, riskier ones. The
challenge intensifies when selecting among parlays that share individual legs, creating overlapping dependencies.
Addressing this selection problem under practical constraints is the focus of our study, where we build on
results from Grant et al. (2008).
If all bets are from unique games—i.e., OI(S) = O(S)—and the bettor can place a wager on every possible
parlay, Grant et al. (2008) shows that the optimal allocation is given by the vector (gO)O∈OI (S), where each
component is defined as

gO =
∏
s∈O

ks

∏
s′∈S:s̸∈O

(1 − ks′) . (3)

When faced with two independent single-option bets, a bettor has the flexibility to wager any amount on
either option, provided the total allocation does not exceed her total wealth. One straightforward strategy
is to treat these bets separately, allocating an amount based on the Kelly Criterion, as long as the total
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(a) ROI over probability of success
(b) Expected logarithmic bankroll growth over

probability of success

Figure 2: Real-world baseball bet on 2024-08-07

remains below 1. Alternatively, the bettor could explore a parlay option and adjust her wager according
to (3). Table 2 illustrates the outcomes of betting based on (2) versus (3), using the single-option and the
parlay bets detailed in Tables 1. Both betting allocation strategies perform similarly, but (3) offers a slightly
better expected logarithmic growth rate with a smaller allocation, as theory indicates.

Allocation Strategy f{1} f{2} f{1,2} Total Allocation Expected logarithmic growth of wealth
Kelly Jr. (1956) 0.084 0.046 0 0.129 0.00773

Grant et al. (2008) 0.08 0.042 0.004 0.126 0.00776
Table 2: Kelly vs Grant allocation - expected growth of wealth analysis

There are two fundamental challenges with the direct use of this result from Grant et al. (2008):

• Exponential Growth: the number of options is exponential; and

• Independence: the set of profitable bets are not generally independent.

We therefore introduce practical constraints which result in a model whose solution is practical but resolution
is challenging. In particular, we define three arguments that a bettor can specify:

• s̄: the maximum number of single-option bets the bettor will base parlays on;

• f̄ : the maximum number of bets a bettor will place; and

• ō: the largest size of any parlay the bettor will place.

s̄ limits attention to a subset of single-option bets, f̄ caps the total number of bets placed, and ō restricts
parlay size, reflecting that sportsbooks may reduce odds or disallow large parlays.
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We thereby modify LG’ to incorporate these parameters in the optimization model and formulate the
constrained logarithmic growth of wealth problem as:

max
∑

S′⊆S

q (S, S′) ln
(

1 −
∑

O∈OI (S)

fO+
∑

O∈OI (S′)

fOdO

)
subject to

∑
O∈OI (S)

fO ≤ 1 − ϵ,

∑
s∈S

zs ≤ s̄,
∑

O∈O(S)

yO ≤ f̄

∑
O∈OI (S):s∈O

yO ≤ zs, ∀s ∈ S,

yO = 0, ∀O ∈ O(S) : |O| > ō,

zs ∈ {0, 1} , ∀s ∈ S,

yO ∈ {0, 1} , 0 ≤ fO ≤ yO, ∀O ∈ OI(S).

(CLG(S, s̄, f̄ , ō))

The objective remains identical. We add two new sets of binary variables: zs will indicate if single-option bet
s is considered for any parlay, and yO will indicate if a wager is placed on O.
We now describe the constraints in sequence. We still limit the total allocation to be less than 1 − ϵ. The
number of single-option bets that are considered is limited to s̄ and the number of total bets is restricted
to f̄ . For all single-option bets, any parlay containing it is required to have 0 wager if we do not select the
single-option bet to consider through variable zs. If the parlay size is beyond the limit of ō, we do not allow
that parlay to be considered. Binary variables zs and yO are specified above, and constraints enforcing the
connection between the wager fractions fO and the selection variables yO completes the model.
The focus of this paper is on understanding problem CLG(S, s̄, f̄ , ō). We study structural results, present
a scalable optimization algorithm that utilizes these results, and run experimental results to evaluate the
algorithm’s performance on synthetic instances and real-world betting data.

4 Adapting Benchmark Algorithms

In this section, we adapt existing algorithms to serve as benchmarks for evaluating our proposed approach.
We first tailor the Fractional Kelly strategy to Problem LG, considering only single-option bets, and then
introduce a methodology based on the Sample Average Approximation framework.

4.1 Fractional Kelly

Given a set of profitable single-option bets, one approach is to exclude parlays (ō > 1) and apply the Kelly
Criterion independently to each bet until the budget is exhausted. However, when the number of bets exceeds
available capital, allocations become interdependent—even for independent bets—since each wager reduces
the wealth available for others.
To address this, we build on the Fractional Kelly (MacLean et al. 1992) and Shrinkage Kelly (Baker and
McHale 2013) approaches, which adjust single-option Kelly bets by scaling allocations. For a bet s, the
bettor selects β ∈ [0, 1] and allocates βks. This accounts for parameter uncertainty and promotes a more
conservative risk posture. To adapt this method to our setting with multiple single-option bets, and to provide
a heuristic benchmark, we propose the following procedure. We first precompute ks for each single-option
bet, and then solve for β via the following:

max
0≤β≤1

∑
S′⊆S

q (S, S′) ln
(

1 + β

(
−
∑
s∈S

ks +
∑
s∈S′

ksds

))
subject to β

∑
s∈S

ks ≤ 1 − ϵ,

(FK)

This model has only one decision variable, β, which makes it attractive from a computational standpoint. It
also reduces symmetry in the allocation when multiple bets have identical parameters. While the objective still
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involves an exponential number of terms the model is simple and can be solved efficiently for moderate-sized
problems.

4.2 Sample Average Approximation Methodology

As an alternative benchmark, we consider the sample-average approximation (SAA), where we generate
random outcomes and optimize for the mean logarithmic growth rate over those simulations. In particular,
we draw nc independent realizations Ξ := (ξ1, . . . , ξnc) of ξ̃, where ξc = (ξc

s)s∈S ∈ {0, 1}S , and ξc
s = 1 (resp.

0) if bet s wins (resp. loses) in scenario c. Then for each scenario c the deterministic terminal wealth is
denoted by W (f ; ξc). The SAA model uses the same feasibility constraints as model CLG(S, s̄, f̄ , ō), but
replaces the objective function denoting the true expected log-wealth E

[
ln (W (f))

]
with its sample average

approximation:

max
f∈F(S)

̂E
[
ln (W (f))

]
= max

f∈F(S)

1
nc

nc∑
c=1

ln
(

W (f ; ξc)
)

(4)

= max
f∈F(S)

1
nc

nc∑
c=1

ln
(

1 −
∑

O∈OI (S)

fO +
∑

O∈OI (S)

fOdO

∏
s∈O

ξc
s

)
.

We refer to this optimization model as (SAA(S, Ξ, s̄, f̄ , ō)).

5 Theoretical Insights

While closed-form solutions exist for (a) a single-option bet and (b) for multiple bets together with all possible
derived parlay options, a general closed-form solution for the optimal allocation given two independent,
profitable single-option bets (without the parlay option) has yet to be determined. Assuming, for i = 1, 2,
that 0 < pi < 1 < di and pidi > 1, the problem can be formulated as follows:

max
f

p1p2 ln
(

1 + f1(d1 − 1) + f2(d2 − 1)
)

+ p1(1 − p2) ln
(

1 + f1(d1 − 1) − f2

)
+

(1 − p1)p2 ln
(

1 − f1 + f2(d2 − 1)
)

+ (1 − p1)(1 − p2) ln
(

1 − f1 − f2

)
.

Little is known even for this small case. When d1 = d2 = 2, the optimal solution (Thorp 2008) is

f∗
1 =

π1
(
1 − π2

2
)

1 − π2
1π2

2
and f∗

2 =
π2
(
1 − π2

1
)

1 − π2
1π2

2
.

Expanding on this, we consider the scenario of two profitable identically parametrized bets.
Proposition 5.1. Given two independent and profitable identically parametrized single-option bets with
probability p and odds d ̸= 2, the optimal allocation to each bet is

f∗ =
(
π2 − 2(d − 2) π + (d − 1)

)
−

√
∆

−4 (d − 1)(d − 2) ,

where ∆ = (π2 − 2(d − 2)π + (d − 1))2 + 8(d − 1)(d − 2)π.

A detailed proof of Proposition 5.1 is provided in Appendix A. Closed-form solutions for more general cases
are unknown. As such, we proceed by establishing an upper bound for Problem CLG(S, s̄, f̄ , ō), which holds
for any values of p and d.

5.1 Upper Bound for CLG(S, s̄, f̄ , ō)

We start by defining, for all s ∈ S, w∗
s as the optimal expected logarithmic growth rate of wealth for just that

single-option bet. This is achieved when ks is wagered on s:

w∗
s = ps ln

(
1 + ks(ds − 1)

)
+ (1 − ps) ln

(
1 − ks

)
= ps ln

(
dsps

)
+ (1 − ps) ln

(
1 − ks

)
, (5)

9
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where ks is given by (2).
We now state the main theoretical result of the paper, which is critical for our LBBD algorithm.
Theorem 5.2. For any subset of single-option bets S ′ ⊆ S and any given parameters s̄, f̄ , and ō, the optimal
value to CLG(S ′, s̄, f̄ , ō) is bounded above by

∑
s∈S′

w∗
s .

Theorem 5.2 relies on a key lemma that computes the optimal value of LG in linear time, avoiding an
exponential sum. This allows efficient evaluation and bounding of the maximum logarithmic growth rate
over constrained subsets. We now show that the expected growth rate under allocation (3) equals the sum of
optimal single-option growth rates.

Lemma 5.3. The optimal objective value for LG is
∑
s∈S

w∗
s ; i.e.,

max
f∈F(S)

E [ln (W (f))] =
∑
s∈S

w∗
s ,

where w∗
s is given by (5).

Proof. Consider ns independent single-option bets occurring sequentially. Theorem 3 in Grant et al. (2008)
proves that the terminal wealth obtained by employing the Grant allocation strategy (3) is identical to the
terminal wealth achieved by sequentially placing bets according to the Kelly Criterion (2). More formally,
given ns independent single-option bets, the terminal wealth under both the Grant allocation and the Kelly
allocation are:

1 −
∑

O∈OI (S)

gO +
∑

O∈OI (S)

gO(dOxO − 1)

 =
∏
s∈S

(
1 + ks(dsxs − 1)

)
.

This equality implies that their corresponding expected logarithmic growth rates must also be identical, i.e.,

E

ln

1 −
∑

O∈OI (S)

gO +
∑

O∈OI (S)

gO(dOxO − 1)

 = E

[
ln
∏
s∈S

(
1 + ks(dsxs − 1)

)]
.

Furthermore, as demonstrated in Section 8 of Grant et al. (2019), one can show the following:

E

[
ln
∏
s∈S

(1 + ks(dsxs − 1))
]

= E

[∑
s∈S

ln (1 + ks(dsxs − 1))
]

=
∑
s∈S

E [ln (1 + ks(dsxs − 1))]

=
∑
s∈S

w∗
s .

By combining these two results, we deduce that for any collection of simultaneous single-option bets S, the
maximum expected logarithmic wealth under Grant allocation is:

E [ln (W (f))] =
∑
s∈S

w∗
s .

A self-contained proof is provided in Appendix B.
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Corollary 5.4. Suppose bets are ordered so that w∗
1 > w∗

2 > . . . > w∗
ns

. The optimal objective value

for CLG(S, s̄, f̄ , ō) with bounded s̄ and no limit on f̄ and ō is
s̄∑

s=1
w∗

s .

Proof. For any set of single-option bets S ′ and any possible parlay of those options, Lemma 5.3 tell us that
the optimal value of LG is

∑
s∈S′

w∗
s . The subset of size at most s̄ that maximizes expected logarithmic growth

is therefore {1, . . . , s̄}.

This immediately proves Theorem 5.2, the main bounding mechanism in our LBBD algorithm.

5.2 Dominance

We later exploit the following simple yet effective dominance relation:
Definition 5.5. Given two profitable single-option bets, we say that single-option bet s′ dominates
single-option bet s′′ if ps′ > ps′′ and ds′ > ds′′ .
Proposition 5.6. Suppose that s′ dominates s′′. If (f∗

O)O∈O(S) is an optimal solution for LG’,∑
O∈O(S):s′′∈O

f∗
O > 0 =⇒

∑
O∈O(S):s′∈O

f∗
O > 0. (6)

The proof of Proposition 5.6 is provided in Appendix C.
Remark 5.7. The result of Proposition 5.6 makes intuitive sense, although its proof is rather technical and
lengthy (see Appendix C). The relation in (6) implies that if the optimal solution uses a single-option bet s′′,
then all single-option bets s′ that dominate s′′ will be used in the optimal solution. We can prove a weaker
version of Proposition 5.6: Suppose we are given two games, h1 and h2, each with sets of single-option bets
S(h1) and S(h2), respectively, both of which are in S. Furthermore, assume that there exists an s′ ∈ S(h1)
that dominates s′′ ∈ S(h2). For any s̄, f̄ and ō, if (f∗

O)O∈O(S) is an optimal solution to CLG(S, s̄, f̄ , ō), then
the following holds: ∑

O∈O(S):s′′∈O

f∗
O > 0 =⇒ ∃s ∈ S(h1) such that

∑
O∈O(S):s∈O

f∗
O > 0.

6 Logic-Based Benders Decomposition

We now present an optimization algorithm that leverages the bounding mechanism from Theorem 5.2 and
the dominance relation in Proposition 5.6 to address the exponential complexity of the objective in CLG(S,
s̄, f̄ , ō). Specifically, if a solution allocates positive wagers only to options with legs in T ⊆ S, the objective
can be evaluated by summing only over outcomes involving subsets of T .
More formally, suppose a bettor is given a set of single-option bets S, ordered so that w∗

1 > w∗
2 > . . . > w∗

ns
. Let

T be a subset of S and introduce a more precise notation on allocations (strategies) by f(T ) =
(
fO(T )

)
O∈O(T ),

emphasizing that the allocation f(T ) only uses single-option bets in T but not S \ T . Consider two strategies
f(T ) and f ′(S). Suppose we have the following: ∀O ∈ O(S), we have: (a) O ̸⊆ T → f ′(O) = 0 and (b)
O ⊆ T → f(O) = f ′(O) (i.e., the strategies are identical on options contained in T and strategy f ′ does not
allocate anything outside of T ). Then E

[
ln
(
W (f ′(S))

)]
= E

[
ln
(
W (f(T ))

)]
.

E
[
ln
(

W (F(S))
)]

= E
[
ln
(

W (F(T ))
)]

.

We can consider the constrained logarithmic growth of wealth problem as a problem parametrized by T , s̄, f̄ ,
and ō and write CLG

(
T , s̄, f̄ , ō

)
. This problem returns a pair (f∗(T ), v(T )) for every T ⊆ S, with f∗(T )

being the optimal allocation and v(T ) the value of that solution. We can thereby recast CLG(S, s̄, f̄ , ō) as

max
T ⊆S:|T |=s̄

CLG
(
T , s̄, f̄ , ō

)
. (CLG-B)

11
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By Theorem 5.2, the optimal value for CLG-B is bounded above by
∑

s∈{1,...,s̄}

w∗
s . The set T considered

in CLG-B can be reduced by eliminating those that contain dependent single-option bets and applying the
dominance rule. More specifically, we need not consider any T with a pair of single-option bets that are
dependent, since we restrict to only independent parlays. Also, by Proposition 5.6 and Remark 5.7, we
can reduce the set of T we consider for any parameters s̄, f̄ , and ō by employing a dominance rule: If a
single-option bet s ∈ S(h) in game h ∈ H is dominated by a single-option bet s′ ∈ S(h′) in game h′ ∈ H
with h ̸= h′, then if s ∈ T , there must also be some other single-option bet s′′ ∈ S(h′) that is included in T .
For this purpose, for all s ∈ S, let D(s) be the set of games for which there exists a bet that dominates s.
The LBBD algorithm is as follows:

LBBD
(
S, H, s̄, f̄ , ō, D

)
• Initialize:

• UB :=
∑

s∈{1,...,s̄}

w∗
s ; LB := 0; Q = ∅; T ∗ = ∅

• While UB > LB:

• T ′ =T ⊆S

{∑
s∈T

w∗
s s.t. |T | = s̄, T /∈ Q,

∀h ∈ H, ∀s ∈ S(h) if s ∈ T =⇒ ∀s′ ∈ S(h) \ {s}, s′ /∈ T , (MP)

∀s ∈ S, if s ∈ T ⇒ ∀h ∈ D(s), ∃s′ ∈ S(h) s.t. s′ ∈ T

}
• UB =

∑
s∈T ′

w∗
s

• (f∗(T ′), v(T ′)) = CLG
(
T ′, s̄, f̄ , ō

)
(SP)

• If v(T ′) > LB:

• Update Incumbant: f∗ = f∗(T ′) and T ∗ = T ′

• LB = v(T ′)

• Q := Q ∪ {T ′}

• Return (T ∗, f∗)

The algorithm is given inputs S, H, s̄, f̄ , ō, and D, and we recall their meanings as follows. S is an initial set
of single option bets and H is the set of all sports games; for every s ∈ S, D(s) denotes the set of games in
H that have at least one single option that dominates s, and for every game h ∈ H, S(h) is the set of all
single options from h; the parameters, s̄, f̄ , and ō, represent the bettor’s practical constraints as introduced
in CLG(S, s̄, f̄ , ō). The algorithm maintains an upper bound UB (initialized to the sum of the s̄ highest
w∗

s), a lower bound LB (initialized to 0), a family of subsets Q of S that have been examined (initialized to
the empty set), and a best-known subset T ∗ (initialized to the empty set). While the upper bound exceeds
the lower bound, a candidate subset T ′ is identified by solving the master problem, which selects the subset
of size s̄ from S with the highest possible upper bound (according to Theorem 5.2) among all subsets that
have not yet been examined and satisfy the independent and dominance rule constraints. The upper bound
is replaced by the upper bound related to set T , and a smaller CLG(S, s̄, f̄ , ō) instance is solved returning
f(T ′) as the candidate solution with value v(T ′). If vT ′ is better than the value of the best found solution,
the global lower bound LB is updated and the incumbent is replaced by f(T ′), also recording T ′ as the best
subset. Additionally, T ′ is added to Q.
The identification of a candidate set T ′ with maximum upper bound from Theorem 5.2 requires solving an
optimization problem problem which we model as a binary optimization problem. The optimization model is

12
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as follows:
max

∑
s∈S

w∗
sχs

s.t.
∑
s∈S

χs = s̄,∑
s∈T

χs ≤ s̄ − 1, ∀T ∈ Q∑
s∈S(h)

χs ≤ 1, ∀h ∈ H

∑
s′∈S(h)

χs′ − χs ≥ 0, ∀s ∈ S, ∀h ∈ D(s)

χs ∈ {0, 1} , ∀s ∈ S.

(MP)

In MP, the variables select a subset of S with the maximum upper bound from Theorem 5.2. The first
constraint guarantees that exactly s̄ single-option bets are selected. The second set of constraints forces the
identification of a different T in each iteration. The third set of constraints requires that an independent
collection of single-option bets is chosen. The fourth set of constraints verifies that the dominance property
(i.e., Proposition 5.6 and Remark 5.7) is respected. Finally, binary constraints on χs complete the master
problem.
Due to the recast of CLG(S, s̄, f̄ , ō) as CLG-B, the prohibition of cycling in the master problem, the
upper bound proven in Theorem 5.2, and the dominance relationship proven in Proposition 5.6, we have the
following result:
Proposition 6.1. LBBD

(
S, H, s̄, f̄ , ō, S, D

)
finds an optimal solution in a finite number of steps.

The algorithm is computationally efficient for several reasons. First, the objective is exponential in s̄, not in
ns, so limiting s̄ keeps subproblems tractable. Second, the gap between the best solution for a given T and
the upper bound from Theorem 5.2 is often small, thereby requiring few iterations.

7 Computational Analysis

We now provide a detailed computational evaluation. All experiments were run on AMD Ryzen 5 3600X
CPU at 3.80GHz, limited to a single thread. Optimization code was run with Python and all models were
constructed in Pyomo. Non-linear models were solved with BARON setting CPLEX as the linear solver. All linear
models were solved with Gurobi. The specific versions are as follows: Python 3.9.18, Pyomo 6.7.0, BARON
2024.5.8, CPLEX 22.1.1, and Gurobi 10.0.0.
The computational section is organized as follows. We begin by describing the synthetic and real-world
datasets used in our analysis, along with the algorithms under consideration. We then present a comparative
evaluation of wealth growth across these algorithms on real-world instances, including a detailed analysis
of hyperparameter settings and the impact of a well-established risk constraint that controls drawdown.
This is followed by experiments on synthetic data, which highlight the computational advantages of the
proposed algorithms in terms of solution time and optimality gap. Finally, we examine the limitations of
SAA, supported by empirical results.

7.1 Instances and Algorithms

We have two benchmark datasets to explore the scalability and efficacy of different algorithms. All instances
will be made available upon reasonable request.

• Synthetic instances: We generate instances for varying ns. Each single-option bet s ∈ S is randomly
generated with ps ∈ U(0.2, 0.8) and ρs ∈ U(5%, 20%) (U(a, b) denotes a uniform distribution over
(a, b)). Therefore, each option is individually profitable and independent of the other single-option

bets, with ds = (1 + ρs)
ps

.

• Real-World Instances: Real-world betting data used in this study was sourced from a proprietary
betting model developed by one of the authors, focusing on prop bets for Major League Baseball
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games played on August 3, 5, 6, 7, 8, and 11, 2024. The dataset was filtered to include only bets
placed on DraftKings that met the following criteria: an estimated success probability between 0.2
and 0.8, an estimated ROI between 5% and 20%, the game had not yet started, and the lineups were
confirmed. This resulted in 406 bets. To align the probability forecasts with actual outcomes, we
adjusted the probability estimates for each day so that the expected ROI matched the actual ROI.
Table 3 describes the best daily available bets in each of our six days of instance.

Date Es
ps

(Adjusted) ρs (%) ks w∗
s

Expected/actual
wealth (% of initial)
with ks allocation

08-03-2024 Bo Naylor (Cleveland)
Batter Strikeouts - Over 0.5 0.76 17 0.31 0.03 105 / 117

08-05-2024 Bo Naylor (Cleveland)
Batter Hits - Under 0.5 0.59 21 0.20 0.02 104 / 80

08-06-2024 Matt Vierling (Detroit)
Batter Strikeouts - Under 1.5 0.78 13 0.30 0.02 104 / 113

08-07-2024 Michael A. Taylor (Pittsburgh)
Batter Strikeouts - Under 1.5 0.70 20 0.29 0.03 106 / 120

08-08-2024 Jakson Reetz (San Francisco)
Batter Hits - Under 0.5 0.57 16 0.15 0.01 102 / 85

08-11-2024 Coby Mayo (Baltimore)
Batter Hits - Under 0.5 0.52 9 0.09 0.00 101 / 109

Cumulative 125 / 119
Table 3: Summary of the Best Available Bets Across Six Days of Instances

In the computational analysis, we consider five betting strategies and compare their performance in terms of
both expected and actual bankroll growth. Recall that s̄ denotes the maximum number of single-option bets
used in the bettor’s strategy. We denote each algorithm as follows:

• FK: The bettor wagers on the top s̄ single-option bets (each day), with the allocations obtained by
solving the fractional Kelly problem in (FK) using BARON.

• SAA: The bettor wagers single-option bets (each day), with the allocation determined by solving
SAA(S, Ξ, s̄, f̄ , ō) (we show later that SAA does not scale when parlays are included).

• G: The bettor wagers on all 2s̄ − 1 possible choices, with the allocations determined by (3).
• B: The bettor wagers on a subset of the 2s̄ − 1 possible choices, and the allocations are obtained by

solving Problem CLG(S, s̄, f̄ , ō) using BARON and CPLEX.
• L: The bettor also wagers on a subset of the 2s̄ − 1 parlay bets, and allocations by solving the

LBBD algorithm, with Gurobi solving the master problem (MP), and BARON and CPLEX solving the
subproblems in (CLG-B).

The first three strategies—SAA, FK, and G—serve serve as benchmarks on, with SAA and FK focus-
ing only on single-option bets and excluding parlays. Strategy B represents the direct numerical solu-
tion to Problem CLG(S, s̄, f̄ , ō), while L is our proposed solution to Problem CLG(S, s̄, f̄ , ō) using
LBBD

(
S, H, s̄, f̄ , ō, S, D

)
. B is presented only on synthetic instances to provide a comparison with L in

terms of scalability and efficacy.

7.2 Computational Results on Real-World Instances

In this section, we report on the results we obtain on real-world betting instances.

7.2.1 Main Results

Tables 4 and 5 present, respectively, the cumulative geometric mean growth of wealth
(
eE[ln(W (f))]) percent,

and the observed terminal wealth achieved, as a percent of initial investment, over six-day of real-world
instances obtained through our tested algorithms. We imposed a limit of a 2 minute runtime on each day of
data, for all algorithms. The FK method is evaluated based on the top s̄ daily bets, as defined by w∗

s . For
SAA, we set nc = 1, 000 and limit ō = 1 due to scalability limitations, which is discuss in Section 7.5. L is
evaluated for ō ∈ {1, 2, 3}. We report results for all three algorithms with s̄ ∈ {2, 3, 4, 5, 6, 7, 8, 9}, and f̄ = 10.
Note that we do not show results for G because it is not applicable to constrained settings, however we do
compare against the solution quality in Section 7.2.4.
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ō = 1 ō = 2 ō = 3
s̄ FK SAA L L
2 123 116 123 123 123
3 131 117 131 133 133
4 139 123 139 142 142
5 146 132 146 150 150
6 151 138 151 156 156
7 155 144 155 161 161
8 158 148 158 164 165
9 160 148 161 166 165

Table 4:Geometric mean growth
(
eE[ln(W (f))]) %

ō = 1 ō = 2 ō = 3
s̄ FK SAA L L
2 227 97 227 235 235
3 248 150 248 262 261
4 212 166 214 223 216
5 239 107 245 260 280
6 312 75 323 342 415
7 293 167 324 363 358
8 338 81 362 513 308
9 336 118 404 483 394

Table 5: Observed terminal wealth, % of initial

We also evaluate the out-of-sample performance of our solutions. To do so, we fix our decisions for the
six days, and simulate, 1 million times, the outcomes of all single options, and record the terminal wealth
achieved. Table 6 summarizes the results, reporting the empirical terminal wealth (mean and standard
deviation) as a percentage of initial investment over the set of scenario.

ō = 1 ō = 2 ō = 3
s̄ FK SAA L L
2 227 ± 189 251 ± 231 227 ± 189 252 ± 233 252 ± 233
3 278 ± 279 288 ± 334 278 ± 279 358 ± 432 364 ± 445
4 313 ± 356 325 ± 407 314 ± 356 475 ± 703 482 ± 721
5 336 ± 418 371 ± 532 338 ± 418 617 ± 1088 619 ± 1116
6 352 ± 475 426 ± 690 354 ± 477 646 ± 1197 662 ± 1345
7 349 ± 483 406 ± 652 359 ± 504 641 ± 1206 646 ± 1306
8 340 ± 474 391 ± 627 355 ± 508 621 ± 1245 629 ± 1250
9 334 ± 468 369 ± 592 352 ± 506 640 ± 1353 560 ± 1086

Table 6: Empirical terminal wealth (mean ± std), % of initial.

7.2.2 Discussion on ō = 1.

L consistently achieves the best results. FK, a strategy derived from approaches commonly used by casual
bettors, also delivers strong performance. The geometric mean growth for the obtained solutions through
FK are nearly identical to those obtained through L, indicating competitive long-run and risk-adjusted
performance. In contrast, SAA is substantially worse than the other methods tested, both in terms of
expected growth rate and the ending wealth. We have a thorough discussion of the limitation of SAA in this
context in Section 7.5.

7.2.3 Discussion on ō > 1.

Introducing parlay options leads to substantial improvements. In terms of geometric mean growth, the
solutions obtained by L further increases when extending to ō = 2 with a geometric mean growth reaching
164% when s̄ = 8 comparatively to 158% with ō = 1. A jump from 158% to 164% geometric mean growth
corresponds to a 164

158 − 1 ≈ 3.8% gain in long-run compounded growth. This results is also reflected in the
real-world instances when s̄ = 8 with an observed terminal wealth of 513 × initial wealth when ō = 2 in
comparison to a factor of 362× when ō = 1.
While L should improve monotonically with increasing ō and s̄, BARON fails to close the optimality gap for
large instances within reasonable time, so this trend is not always observed. As discussed in Appendix D,
increasing s̄ and ō greatly raises problem complexity—explaining why, for s̄ = 9, L with ō = 2 outperforms
ō = 3.
Finally, Table 6 shows that L with ō = 2 attains a higher growth than L with ō = 1, but with significantly
larger standard deviations of terminal wealth. This highlights a trade-off between growth and volatility:
while parlay options enhance the geometric mean growth, they also increase the likelihood of extreme
outcomes—both positive and negative. We extend this discussion in Section 7.2.5.

7.2.4 f̄ Analysis Using Real-world Data

The previous analysis provided a comparison of all algorithms by evaluating their performance under a fixed
maximum number of bets, f̄ = 10. However, as s̄ increases, the number of available parlay combinations
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grows exponentially. Figure 3 compares the geometric mean growth achieved by L (with ō = 2) against G, as
f̄ increases. Recall that G selects the s̄ single-option bets with the highest individual wealth measures w∗

s
and requires wagering on all corresponding parlay combinations (i.e., 2s̄ − 1 bets) according to (3). Note,
however, that the constraint given by f̄ does not apply to method G, as shown by the dashed horizontal line.
In contrast, the red triangle markers represent the values achieved by L. As expected, Figure 3 demonstrates

Figure 3: Geometric mean growth %: L vs. G.

that the gap in geometric mean growth of wealth between G and L decreases as f̄ increases. Amazingly, the
solutions obtained through L are reasonably close to G with substantially fewer bets. In particular, even for
s̄ = 8, where betting on all 28 − 1 = 255 achieves a maximum of approximately 175, we can obtain a solution
with value over 130 even with limiting f̄ = 2. If we allow f̄ = 10 we achieve nearly equivalent objective value
with an order of magnitude fewer allocations.

7.2.5 Drawdown and Tail Risk Analysis

A significant concern with the log-utility objective is the potential for large losses. To mitigate this risk,
Busseti et al. (2016) propose a drawdown constraint

ln

∑
S′⊆S

exp

ln (q (S, S′)) − λ ln

1 −
∑

O∈OI (S)

fO +
∑

O∈OI (S′)

fOdO

 ≤ 0,

parametrized by λ > 0, which controls the level of risk aversion. The purpose is to limit the likelihood that
terminal wealth W (f) falls drastically. As noted in their study, setting λ = 6.456 limits the probability of
a 50% drawdown to approximately 1.1%. The authors in Busseti et al. (2016) show that this constraint is
convex and thereby computationally attractive.
Given its convexity, the drawdown constraint can be naturally integrated into optimization prob-
lem (CLG(S, s̄, f̄ , ō))—and by extension, into the LBBD framework—to explicitly manage downside risk,
potentially at the cost of reduced expected wealth growth. Using the real-world instance spanning six days,
we compare the terminal wealth of L with and without the drawdown constraint over 1,000,000 simulations.
Figures 4a and 4b respectively illustrate the probabilities of drawdown (i.e., P(W (f) < α)) and of maintaining
or exceeding the wealth threshold α (i.e., P(W (f) ≥ α)). The x-axis and the y-axis in both plots are presented
on a logarithmic scale. Results are shown for s̄ = 6, ō ∈ {1, 2}, and λ = 6.456 with α ∈ (0, 20).
Figure 4a shows that L with ō = 2 has a 23% probability of experiencing a drawdown exceeding 51%. In
contrast, incorporating the risk constraint (with λ = 6.456) significantly mitigates downside risk, reducing
the probability of a 51% drawdown to just 4%—a highly favorable outcome for risk-averse bettors. However,
this reduction in risk comes at the cost of diminished upside potential, resulting in a less positively skewed
wealth distribution. Indeed, Figure 4b illustrates that L with ō = 2 yields a 50% probability of achieving at
least a 50% increase in wealth, compared to only 27% under the risk-constrained formulation. Under the
risk-averse setting (λ = 6.456), the allocations for ō = 1 and ō = 2 are nearly identical; however, observe that
ō = 2 is slightly less risky (Figure 4a) and also achieves a higher probability of exceeding α (Figure 4b).
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(a) Drawdown probability (CDF) (b) Probability of exceeding α (Inverse CDF)

Figure 4: Impact of Risk Constraints on Drawdown and Upside Probabilities

Finally, Table 4 indicates that the standard deviation of outcomes increases with ō. Figure 4b further
illustrates that L with ō = 2 yields a more positively skewed wealth distribution compared to L with ō = 1, a
desirable attribute for risk-neutral bettors.

7.3 Comparative Analysis of B and L

The performance of L relies on BARON’s ability to solve B, which is comprehensively analyzed in Appendix D
across various configurations of ns, s̄, ō, and f̄ . Section 7.2 presents a detailed examination of L on large-scale
real-world instances. Note that BARON cannot solve such instances exactly, due to the large number of
scenarios and number of parlay options.
In this section, we compare the performance of L and B in terms of solving time and optimality gap on small
instances. We randomly generated 100 synthetic instances as described in Section 7.1, and recorded both
the solving time and the optimality gap for L and B, given a 120-second time limit. Figure 5 provides a
comparison of B (depicted as colored circles) and L (depicted as colored triangles) under the parameter
configuration ns = 10, f̄ = 10, ō = 2, and s̄ ∈ {4, 5, 6}. The figure shows the cumulative number of solved
instances over time (in seconds) and the cumulative number of unsolved instances as a function of the
optimality gap (in %).

Figure 5: Comparative analysis between L and B with parameter setting ns = 10, ō = 2, f̄ = 10, and varying s̄

Figure 5 shows that L outperforms B. In particular, for s̄ = 4, nearly all 100 instances are solved to provable
optimality by L but almost only one instance is solved to optimality by B. As s̄ grows, the relative dominance
shrinks. The reason for this is because BARON is used to solve the subproblems in L, thereby becoming
the bottleneck and disallowing multiple rounds of Benders cuts.
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7.4 Benders cut convergence

To better understand the performance gains that L provides, we analyze the number of cuts required to prove
optimality. In these experiments we fix the maximum number of single-option bets to s̄ = 5 and the total
number of bets to f̄ = 10, impose a 120-second time limit on each solve, and analyze the dataset collected on
August 6, 2024. Figure 6 shows, for ō ∈ {1, 2, 3}, the progression of the lower bound (LB, blue triangles) and
upper bound (UB, orange circles)—both reported as geometric mean growth (%)—over successive Logic-Based
Benders iterations.

• ō = 1: A total of 29 cuts are generated before LB and UB meet. The UB begins at 105.02% while
the LB starts near 104.81%. With each iteration the UB steadily falls, until both bounds coincide at
iteration 29.

• ō = 2: By the second iteration LB and UB already coincide, illustrating how permitting two-leg
parlays drastically shrinks the master problem’s search space.

• ō = 3: Under the 120-second time limit, BARON fails to solve the initial instance, leaving the case
ō = 3 unresolved. Appendix D discusses these limitations as ō increases.

As ō goes from single-option to two-leg parlay options, L requires dramatically fewer iterations. Allowing
parlays of sizes two reduce the gap between the lower bound and the upper bound, yielding near optimal
solutions quickly, and often even a tight optimality certificate in the first iteration.

Figure 6: Benders Analysis for L with s̄ = 5, f̄ = 10, and Varying ō (Data: 08-06-2024)

7.5 Challenges with SAA

For ō = 1, Tables 4–6 show that while SAA lags FK and L in geometric mean growth, it finds solutions
with high expected terminal wealth—highlighting the trade-off between ROI and long-term growth. This is
because SAA is highly sensitive to small sampling errors, leading to larger, riskier allocations.
We illustrate the challenge with applying SAA, which stems from sampling error, using a simple example
with ns identical profitable single-option bets (i.e., ps = p and ds = d for all s ∈ [ns]). Suppose the bettor is
restricted to selecting at most one bet (i.e., s̄ = 1 and ō = 1) and aims to maximize the expected logarithmic
growth of wealth. Since all bets are identical, any single option s∗ can be selected and the Kelly allocation
f∗ is given by f∗

s∗ = ks∗ and all other weights zero.
Contrastingly, for an implementation of SAA, the bettor generates nc independent simulations and estimates
the win probability for each option s as p̂s := 1

nc

nc∑
c=1

ξc,s. The option ŝ with the highest p̂s would then be

selected and the allocation f̂ prescribed by SAA would be f̂ŝ = max
{

p̂ŝd−1
d−1 , 0

}
, with no weight on other

bets.
The difference in expected terminal wealth achieved by f̂ and f∗ can be expressed as:

E
[
W (f̂)

]
− E [W (f∗)] =

[
p(1 + f̂ŝ(d − 1)) + (1 − p)(1 − f̂ŝ)

]
− [p(1 + f∗

s∗(d − 1)) + (1 − p)(1 − f∗
s∗)]

= (dp − 1)(f̂ŝ − f∗
s∗).
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Therefore, if p̂ŝ > p (which it generally would even if the number of possible options is small), then f̂ŝ > f∗
s∗

and E[W (f̂)] > E[W (f∗)]. However, this is too high for long-run wealth.
The tendency for SAA to over-allocate stems from the fact that the maximum of ns empirical success rates
is often much higher than the success rates of each single-option bets. Again for the simple case of identical
bets, for each s ∈ [ns], let the number of successes be defined as Ỹs :=

nc∑
c=1

ξ̃c
s, which will follow a Binomial

distribution, i.e., Ỹs ∼ Binomial(nc, p). Let p̃s = Ỹs

nc
. Then, the expected maximum empirical success rate is:

E
[

max
s=1,...,ns

p̃s

]
= 1

nc

nc∑
c=0

c · [F (c)ns − F (c − 1)ns ] ,

where F (c) = P(X ≤ c) is the CDF of the Binomial distribution with parameters nc and p, and F (−1)ns := 0.
Assume ns = 50 single-option bets with p = 0.5 and d = 2.5, and nc = 1,000 sampled simulations. The
expected maximum empirical success rate is 0.536. Under this estimate, SAA selects the highest empirical
probability bet, yielding a geometric mean growth of 101.8, compared to 102.1 for the optimal Kelly allocation.
This example shows that even a small sampling error (3.6%) can lead SAA to a suboptimal choice—typically
via over-allocation—even when selecting a single bet (s̄ = 1). This effect can be more pronounced in
generalized settings.
While SAA yields asymptotically optimal allocations as nc increases, its runtime grows sharply. An analysis
of SAA’s scalability across various parameters appears in Appendix E.

8 Economic Analysis of Parlay Option’s Pricing

In this section, we examine the pricing of parlay options and their impact on the expected logarithmic
growth of wealth for a sports bettor. As shown in Section 7, in our data set, a bettor can boost expected
long-run compounded growth by 3.1% by placing parlay bets of size two rather than restricting wagers to
single-option bets. From the sportbook perspective, parlay option can be seen as risky asset when exploited
by sophisticated bettors.
To analyze this effect in detail, we consider two profitable single-option bets, denoted by S = {1, 2}. We
assume that the decimal odds for the parlay option O = {1, 2} satisfy dO ≤ d1 d2, reflecting that a sportsbook
has no incentive to offer overly favorable odds. Given that both single-option bets are profitable, the parlay
option O remains profitable as long as dO > 1

p1p2
. For illustrative purposes, we set the event probabilities to

pi = 1+ρi

di
, with ρi = 15%.

Our analysis considers the scenario where d1 = d2 = d and p1 = p2 = p. Proposition 5.1 provides the optimal
allocation when ō = 1. Each subplot in Figure 7 illustrates the expected logarithmic growth of wealth as the
decimal odds for the parlay options vary. Figure 7 depicts the optimal allocation for the two single-option bets
(pink square), the Grant allocation (assuming dO = d1 d2; green line), and the optimal allocation including
the parlay for ō = 2 (blue scatter points).

Figure 7: Expected logarithmic growth of wealth with respect to the decimal odd of the parlay option - d1 = d2 = D
and ρ1 = ρ2 = 15%

Figure 7 demonstrates that as d decreases (with the corresponding increase in p), the incremental improvement
in expected logarithmic growth of wealth from incorporating parlay options grows exponentially. Notably,
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when d = 2, a reduction in the parlay option’s decimal odds from 4.00 to 3.92 eliminates any benefit from
parlaying bets; the parlay offers no extra expected logarithmic growth over two single-option bets. Any
further reduction yields suboptimal betting.
This offers valuable insights for sportsbooks. Specifically, if a sportsbook wants to limit its exposure to
sophisticated bettors exploiting parlays, even a slight reduction in parlay pricing can make them unattractive
in an optimal betting allocation. Casual bettors may still find value and continue placing these bets, so that
the sportsbook also benefits from paying less if the parlay hits.

9 Conclusion

This work tackles the problem of optimally allocating wealth across binary options under real-world constraints,
with a focus on sports betting. Specifically, we study the problem of maximizing logarithmic growth of
wealth under combinatorial constraints and developed a scalable logic-based Benders decomposition algorithm
to identify optimal allocation. Our economic analysis further reveals how sportsbooks influence a bettor’s
behavior through parlay pricing, showing that small payout adjustments can neutralize log-optimal strategies.
While grounded in sports betting, our framework generalizes to binary prediction markets and other financial
domains, with future directions including modeling option dependencies and incorporating estimation
uncertainty.
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A Closed-form solution for symmetric two-option case with d ̸= 2 and p > 1
d

In this section, we provide a self-contained proof of Proposition 5.1.

Proof. Consider the symmetric two single-option bets with
p1 = p2 = p, d1 = d2 = d,

and assume
1
d

< p < 1, dp ̸= 2, π := dp − 1 > 0,

where π denotes the expected net profit. We introduce the new decision variable A as the total fraction
of the portfolio wagered on both single-option bets, and ui ∈ [0, 1] as the proportion of A wagered on si.
Given two single-option bets, we therefore have f1 = Au1 and f2 = Au2 with u1 = 1 − u2. As shown by
Boyd and Vandenberghe (2004), an affine transformation of f1 and f2 preserves the convexity of the problem.
Specifically, the objective function can be rewritten as:

max
u1,A

p2 ln
(

1 + Au1(d − 1) + A(1 − u1)(d − 1)
)

+ p(1 − p) ln
(

1 + Au1(d − 1) − A(1 − u1)
)

+ (LG2∗)

p(1 − p) ln
(

1 − Au1 + A(1 − u1)(d − 1)
)

+ (1 − p)2 ln
(

1 − A

)
.

Because each log-term is strictly concave in (u1, A) and we maximize over a convex set, (LG2∗) is a strictly
concave maximization. Hence any point satisfying the first-order (KKT) conditions is the unique global
optimum.
Using the chain rule of derivatives, the first-order condition are

dLG2∗

du1
= dLG2

df1

df1

du1
+ dLG2

df2

df2

du1

= A(dLG2

df1
− dLG2

df2
)

dLG2∗

dA
= dLG2

df1

df1

dA
+ dLG2

df2

df2

dA

= u1
dLG2

df1
+ (1 − u1)dLG2

df2
,

which reduce to
dLG2∗

du1
= p(1 − p)

(
Ad

1 + A(u1d − 1) − Ad

1 + A(d(1 − u1) − 1)

)
(7)

dLG2∗

dA
= p2(d − 1)

1 + A(d − 1) + p(1 − p)
(

u1d − 1
1 + A(u1d − 1) + (1 − u1)d − 1

1 + A((1 − u1)d − 1)

)
− (1 − p)2

1 − A
(8)

Solving Equation 7 for u1 gives u1 = 1
2 . By replacing u1 = 1

2 in Equation 8, we can rewrite the derivative as

dLG2∗

dA
= A2(−2(d − 1)(d − 2)) − A((dp)2 − 2d(dp) + 2(dp + 3d − 4) + 2(dp − 1)

2(1 + 2A(d − 1))(1 + A(d − 2))(1 − A) (9)

After some algebraic manipulation, the first derivative of LG2∗ with respect to A can be written as
dLG2∗

dA
= −2(d − 1)(d − 2) f2 − (π2 − 2(d − 2)π + d − 1) f + π.

Setting this derivative to zero yields the two critical points

A = −1
2(d − 2)(d − 1)(π2 − 2(d − 2)π + d − 1±√

(dp)4 − 4d(dp)3 + 4d2(dp)2 + 4(dp)3 − 2d(dp)2 − 4d2(dp) − 4(dp)2 + 4d(dp) + d2).
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Let ∆ denote the discriminant of this quadratic in f . A direct calculation shows

∆ = (dp)4 − 4d(dp)3 + 4d2(dp)2 + 4(dp)3 − 2d(dp)2 − 4d2(dp) − 4(dp)2 + 4d(dp) + d2

= (π2 − 2(d − 2)π + (d − 1))2 + 8(d − 1)(d − 2)π.

To ensure feasibility, we next verify that ∆ > 0. By construction, we have π > 0 and d ≠ 2. For d > 2,
it is simple to see that ∆ > 0 since the first term is squared and the second term is strictly positive. For
1 < d < 2, a deeper analysis is required. First, a direct computation shows that for all real π,

d2∆
dπ2 = 2

[
2π − 2(d − 2)

]2 + 4
[
π2 − 2(d − 2)π + (d − 1)

]
> 0,

so ∆ is strictly convex for all π. Here p ∈
[
1/d, 1

]
, so

π = dp − 1 =⇒ π ∈
[
d · (1/d) − 1, d · 1 − 1

]
=
[
0, d − 1

]
.

A strictly convex function on the closed interval attains its (unique) minimum at one of the two endpoints.
Hence the endpoints in π correspond to

π = 0 =⇒ ∆ = (d − 1)2 > 0, π = d − 1 =⇒ ∆ = d2(d − 1)2 > 0.

By convexity (under the hypothesis 1 < d < 2), it follows that ∆(π) > 0 for all π ∈ [0, d − 1].
Since by symmetry u1 = u2 = 1

2 we have

f1 = f2 = f = A

2 ,

so A = 2f . The two stationary candidates are

f̂± =
(
π2 − 2(d − 2)π + d − 1

)
±

√
∆

−4 (d − 1)(d − 2) .

Since LG2∗ is strictly concave, there exists a unique global optimal solution. We always require f ∈ [0, 1/2]
so that ln(1 − 2f) remains well-defined. Therefore, we now analyze both f̂+ and f̂− for all values of d and
π. By construction, we have that p ∈ [ 1

d , 1] and therefore π ∈ [0, d − 1]. For d > 2 and 1 < d < 2, f̂± is
continuous on both domains, and strictly increasing in π. Therefore, we next verify which of f̂+ and f̂− is
the global optimal solution for the end points of the domains.
Case 1: d > 2.
- Denominator −4(d − 1)(d − 2) < 0.
- At p = 1/d (π = 0):

√
∆ = d − 1 =⇒ f̂+ = (d − 1) + (d − 1)

−4(d − 1)(d − 2) < 0, f̂− = (d − 1) − (d − 1)
−4(d − 1)(d − 2) = 0.

- At p = 1 (π = d − 1):
√

∆ = d(d − 1) =⇒ f̂+ = (d − 1)(d − 1 − 2(d − 2) + 1 + d)
−4(d − 1)(d − 2) < 0, f̂− = 1

2 .

Hence as p runs from 1/d to 1, f̂− increases from 0 to 1
2 (staying inside [0, 1

2 ]), while f̂+ lies strictly outside
[0, 1/2].

Case 2: 1 < d < 2.
- Denominator −4(d − 1)(d − 2) > 0.
- At p = 1/d (π = 0):

√
∆ = d − 1 =⇒ f̂+ = (d − 1) + (d − 1)

−4(d − 1)(d − 2) < 0, f̂− = (d − 1) − (d − 1)
−4(d − 1)(d − 2) = 0.
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- At p = 1 (π = d − 1):

√
∆ = d(d − 1) =⇒ f̂+ = (d − 1)(d − 1 − 2(d − 2) + 1 + d)

−4(d − 1)(d − 2) = 1
2 − d

>
1
2 , f̂− = 1

2 .

Again f̂− runs from 0 up to 1/2, while f̂+ falls outside [0, 1/2].

By strict concavity of the objective, the unique global maximizer valid for all d > 1, d ̸= 2 is therefore always

f∗ = f̂− =
(
π2 − 2(d − 2) π + (d − 1)

)
−

√
∆

−4 (d − 1)(d − 2) ,

where ∆ = (π2 − 2(d − 2)π + (d − 1))2 + 8(d − 1)(d − 2)π.

B Proof of Lemma 5.3: Simplified Optimal Logarithmic Growth Rate

In this section, we provide a self-contained proof of Lemma 5.3.

Proof. Grant et al. (2008) proves that f∗ := (gO)O∈O(S) in (3) is an optimal solution to LG. Furthermore, in
Theorem 3 of Grant et al. (2008), the following statement (adapted to our notation) is presented: for all
S′ ∈ S,

1 −
∑

O∈O(S)

gO +
∑

O∈O(S′)

gOdO =
∏

s∈S:s∈S′

(
1 − ks + dsks

) ∏
s∈S:s̸∈S′

(
1 − ks

)
. (10)

Note that we purposely write the indices of the product terms as s ∈ S : s ∈ S′ and s ∈ S : s /∈ S′ instead of
s ∈ S′ and s /∈ S′ for clarity later.
Using this identify, we can now write:

1 −
∑

O∈O(S)

gO +
∑

O∈O(S′)

gOdO =
∏

s∈S:s∈S′

(
1 + (ds − 1)psds − 1

ds − 1

) ∏
s∈S:s̸∈S′

(
1 − ks

)

=
∏

s∈S:s∈S′

(
psds

) ∏
s∈S:s̸∈S′

(1 − ks)
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Therefore,

E [ln (W (f∗))] =
∑

S′⊆S

q (S, S′) ln
(

1 −
∑

O∈O(S)

gO +
∑

O∈O(S′)

gOdO

)
(11)

=
∑

S′⊆S

q (S, S′) ln
( ∏

s∈S:s∈S′

(
psds

) ∏
s∈S:s̸∈S′

(1 − ks)
)

(12)

=
∑

S′⊆S

q (S, S′)
( ∑

s∈S:s∈S′

ln(psds) +
∑

s∈S:s̸∈S′

ln (1 − ks)
)

(13)

=
∑

S′⊆S

( ∑
s∈S:s∈S′

q (S, S′) ln(psds) +
∑

s∈S:s̸∈S′

q (S, S′) ln (1 − ks)
)

(14)

=
∑

S′⊆S

∑
s∈S:s∈S′

q (S, S′) ln(psds) +
∑

S′⊆S

∑
s′∈S:s′ ̸∈S′

q (S, S′) ln (1 − ks) (15)

=
∑
s∈S

∑
S′⊆S:s∈S′

q (S, S′) ln(psds) +
∑
s′∈S

∑
S′⊆S:s′ ̸∈S′

q (S, S′) ln (1 − ks) (16)

=
∑
s∈S

 ∑
S′⊆S:s∈S′

q (S, S′) ln(psds) +
∑

S′⊆S:s̸∈S′

q (S, S′) ln(1 − ks)

 (17)

=
∑
s∈S

ln(dsps)
∑

S′⊆S:s∈S′

q (S, S′) + ln(1 − ks)
∑

S′⊆S:s ̸∈S′

q (S, S′)

 , (18)

To sequence of arithmetic equivalences is as follows. Line (11) is by the optimality of (gO)O∈O(S). Line (12)
is from the identity above. Line (13) uses the log identify. Line (14) distributes the probability of outcome
within the inner summations. Line (15) distributes the outer summation. Line (16) follows because in the
first summation there is one and only one term for every pair of s and S′ containing s, and in the second
summation there is one and only one term for every pair of s and S′ not containing s. Line (17) factors the
sum over all s ∈ S. Finally, line (18) factors the log terms.
For any s ∈ S, we can write the set of outcomes for which s is successful as {S′ ⊆ S : s ∈ S′}, so that

ps =
∑

S′⊆S:s∈S′

q (S, S′)

and
1 − ps =

∑
S′⊆S:s/∈S′

q (S, S′) .

Therefore,
E [ln (W (f∗))] =

∑
s∈S

ps ln (dsps) + (1 − ps) ln (1 − ks)

=
∑
s∈S

w∗
s .

C Proof of Proposition 5.6:

Proof. By way of contradiction to (6), suppose there exists an optimal allocation f ′′ = (f ′′
O)O∈O(S) with∑

O∈O(S):s′∈O

f ′′
O = 0 and

∑
O∈O(S):s′′∈O

f ′′
O > 0. Note that this implies that for any O with s′, s′′ ∈ O, f ′′

O = 0.

Additionally, we define O′′ as the set of all parlay options O′′ such that f ′′
O′′ > 0, where s′′ ∈ O′′ but s′ /∈ O′′.

By construction, f ′′
O′ = 0. Furthermore, let O′ denote the set obtained by replacing s′′ with s′ in each option

O′′ ∈ O′′, formally given by:
O′ := {O′ = (O′′ \ {s′′}) ∪ {s′} : O′′ ∈ O′′} .
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We define a new solution f ′ = (f ′
O)O∈O(S), which is identical to f ′′ except that f ′

O′′ = 0 and f ′
O′ = f ′′

O′′ .
The total allocation does not change, i.e.,

∑
O∈O

f ′
O =

∑
O∈O

f ′′
O. Notice that for any pair of (O′, O′′), we have

dO′′ < dO′ because ds′′ < ds′ .
Next, we argue that f ′ constructed above is more preferred to f ′′, i.e., E [ln (W (f ′′))] − E [ln (W (f ′))] < 0,
contradicting the optimality of f ′′ and thereby establishing (6). To that end, we divide the full sample space
into four subspaces Si ⊆ S, i = 1, 2, 3, 4 by

1. S1 = {S′ ⊆ S : s′′ /∈ S′ and s′ /∈ S′} (s′′ and s′ are not a winning bet);

2. S2 = {S′ ⊆ S : s′′ ∈ S′ and s′ /∈ S′} (s′′ is winning bet and s′ is not);

3. S3 = {S′ ⊆ S : s′ /∈ S′ and s′′ /∈ S′} (s′ and s′′ are not winning bet);

4. S4 = {S′ ⊆ S : s′ ∈ S′ and s′′ /∈ S′} (s′ is winning bet and s′′ is not);

Note that S1 ∪ S2 and S3 ∪ S4 respectively exclude s′ and s′′. The idea is that S1 ∪ S2 (resp. S3 ∪ S4) is
constructed for f ′′ (resp. f ′), where by construction f ′′ (resp. f ′) allocates 0 to all parlay options O′ ∈ O′

(resp. O′′ ∈ O′′). By construction, S1, S2, S3, and S4 have the same cardinality and both S1 ∪ S2 and S3 ∪ S4
form exhaustive subspaces of S \ {s′} and S \ {s′′}, respectively. This allows us to rewrite

E [ln (W (f ′′))] − E [ln (W (f ′))] =
∑

S′⊆S

q (S, S′) ln (W (f ′′)(S′)) −
∑

S′⊆S

q (S, S′) ln (W (f ′)(S′))

=
∑

S1∈S1

q (S1, S1) (1 − ps′′) ln (W (f ′′)(S1))

+
∑

S2∈S2

q (S2 \ {s′′}, S2 \ {s′′}) ps′′ ln (W (f ′′)(S2))

−
∑

S3∈S3

q (S3, S3) (1 − ps′) ln (W (f ′)(S3))

−
∑

S4∈S4

q (S4 \ {s′}, S4 \ {s′}) ps′ ln (W (f ′)(S4))

Observe that ∀S1 ∈ S1, there exists exactly one scenario S2 ∈ S2, S3 ∈ S3, and S4 ∈ S4 such that
S1 = S2 \ {s′′} = S3 = S4 \ {s′}. Given that both S1 ∪ S2 and S3 ∪ S4 are exhaustive subspaces of S with
identical cardinality, we next show that the logarithmic bankroll growth for f ′′ over (S1, S2) is always less
than that for f ′ over (S3, S4).
By construction, the two allocations, f ′ and f ′′, are identical except for bets in O′ and O′′. As such, the
bettor’s wealth, excluding the possible payout from O′ ∈ O′ in f ′ or from O′′ ∈ O′′ in f ′′, is always identical
for every S̄ ⊆ S \ {s′, s′′}, which we denote by Ŵ . For simplicity, we use vector notation to represent the
bankroll growth associated with f ′′ (resp. f ′) over all parlay options ∀O′′ ∈ O′′ (resp. ∀O′ ∈ O′) as f ′′T dO′′

(resp. f ′T dO′).
Using the unique pair of scenarios (S1, S2, S3, S4) as defined above, the difference in logarithmic bankroll
growth between f ′ and f ′′ is given by:

q (S1, S1) (1 − ps′′) ln(Ŵ ) + q (S2 \ {s′′}, S2 \ {s′′}) ps′′ ln
(

Ŵ + f ′′T dO′′

)
− q (S3, S3) (1 − ps′) ln(Ŵ ) − q (S4 \ {s′}, S4 \ {s′}) ps′ ln

(
Ŵ + f ′T dO′

)
= q (S1, S1)

(
(1 − ps′′) ln(Ŵ ) + ps′′ ln

(
Ŵ + f ′′T dO′′

)
− (1 − ps′) ln(Ŵ ) − ps′ ln

(
Ŵ + f ′T dO′

))
(19)

∝ (1 − ps′′) ln(Ŵ ) + ps′′ ln
(

Ŵ + f ′′T dO′′

)
− (1 − ps′) ln(Ŵ ) − ps′ ln

(
Ŵ + f ′T dO′

)
(20)

26



Log-Optimal Portfolio Construction for Binary Options A Preprint

The probability of observing any of S1, S2, S3, or S4, excluding s′ and s′′, is identical, i.e.,
q (S1, S1) = q (S2 \ {s′′}, S2 \ {s′′}) = q (S3, S3) = q (S4 \ {s′}, S4 \ {s′}) .

This allows us to factor out q (S1, S1) in Line (19). Since q (S1, S1) > 0 for all pairs of scenarios (S1, S2, S3, S4),
we can omit this positive term and proceed by analyzing only the proportional function given in Line (20).
Specifically, we will show that the expression in Line (20) is strictly negative for all such pairs, which directly
implies that the overall difference in bankroll growth is negative. The proof is as follows:

(1 − ps′′) ln(Ŵ ) + ps′′ ln(Ŵ + f ′′T dO′′) − (1 − ps′) ln(Ŵ ) − ps′ ln(Ŵ + f ′T dO′) (21)
= ps′′ ln(Ŵ + f ′′T dO′′) − ps′ ln(Ŵ + f ′T dO′) + (1 − ps′′) ln(Ŵ ) − (1 − ps′) ln(Ŵ ) (22)
= ps′′ ln(Ŵ + f ′′T dO′′) − ps′ ln(Ŵ + f ′T dO′) − ln(Ŵ )(ps′′ − ps′) (23)
< ps′′ ln(Ŵ + f ′T dO′) − ps′ ln(Ŵ + f ′T dO′) − ln(Ŵ )(ps′′ − ps′) (24)
= (ps′′ − ps′) ln(Ŵ + f ′T dO′) − ln(Ŵ )(ps′′ − ps′) (25)

= (ps′′ − ps′) ln
(

Ŵ + f ′T dO′

Ŵ

)
< 0. (26)

The sequence of arithmetic steps is as follows. Line (21) represents the difference between the growth rate of
f ′′ over (S1, S2) and that of f ′ over (S3, S4). Line (22) reorders the terms for simplicity. Line (23) factors
out ln(Ŵ ) and reduces the probabilities as (1 − ps′′) − (1 − ps′) = −(ps′′ − ps′). Line (24) substitutes
ln(Ŵ + f ′′T dO′′) with ln(Ŵ + f ′T dO′), which is strictly greater by construction. Line (25) factors out

ln(Ŵ + f ′T dO′). Line (26) factors out ps′′ − ps′ . Finally, since ln
(

Ŵ +f ′′T dO′′

Ŵ

)
> 0 and ps′′ − ps′ < 0, the

result of Line (26) is strictly less than 0. This implies that the logarithmic bankroll growth rate f ′′ achieves
over (S1, S2) is strictly less than the one f ′ achieves over (S3, S4).
The previous results hold for ∀S1 ∈ S1, S2 ∈ S2, S3 ∈ S3, S4 ∈ S4 : S1 = S2 \ {s′′} = S3 = S4 \ {s′}. By
summing over all pairs of scenarios, we have that f ′ generate a greater expected logarithmic growth rate than
f ′′, which is a contradiction with the initial assumption. Therefore, f ′ is strictly a better allocation than f ′′,
and it must be the case that ∑

O∈O(S):s′′∈O

f∗
O > 0 =⇒

∑
O∈O(S):s′∈O

f∗
O > 0

if s′ dominates s′′.

D Scalability Analysis of B

This section provides an extensive analysis of the scalability of B across various parameter settings and
synthetic instances. We selected all possible combinations of the following parameters:

• ns = s̄ ∈ {4, 6, 8}
• f̄ ∈ {2, 5, 10}
• ō ∈ {1, 2, 3}.

For each value of ns, we generated 10 instances of single-option bets. Table 7 presents the average solving
time (in seconds) and the average optimality gap given by BARON within a 120-second time limit across all
instances. In the Solving Time and Optimality Gap columns, we include, in parentheses, the count of solved
and unsolved instances out of the 10 generated. A “-” in these columns indicates that either all instances
were unsolved (for Solving Time) or all instances were solved (for Optimality Gap).
Table 7 reveals that the efficacy of B in solving instances is significantly influenced by ns and ō, while the
impact of f̄ is comparatively minimal. B can optimally solve instances of size up to ns = 6 when ō ≤ 2. This
limitation suggests that B struggles to find optimal allocations for cases involving more than 6 single-option
bets.
This paper is interested in the case where ns >> s̄. Next, we analyze the impact of s̄ compared to ns.
Identically to Table 7, we selected all possible combinations of the following parameters:
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Solving time (s) Optimality gap (%)

ns
f̄

ō 1 2 3 1 2 3

4
2 0.18 0.27 0.40 – – –
5 0.13 0.39 0.44 – – –

10 0.13 0.12 0.40 – – –

6
2 0.40 4.67 20.06 – – –
5 0.29 58.51 – – – 9.01 (8/10)

10 0.17 36.71 (8/10) – – 2.37 (2/10) 2.40

8
2 3.47 82.34 (6/10) – – – 15.51 (4/10)
5 4.79 – – – 17.26 21.01

10 0.58 – – – 7.20 6.82
Table 7: Performance of B under varying ns, ō, and f̄ .

• ns ∈ {8, 10, 12}

• s̄ ∈ {4, 6, 8}

• f̄ = 10

• ō = 2.

For each value of ns, we generate 10 instances of single-option bets. Table 8 presents the average solving
time (in seconds) and the average optimality gap achieved within a 120-second time limit across all instances.

Solving time (s) Optimality gap (%)

ns

s̄ 4 6 8 4 6 8

8 35.42 (9/10) – – 13.61 (1/10) 6.74 7.19
10 – – – 15.64 12.04 13.49
12 – – – 96.68 100 100

Table 8: Performance of B under varying ns and s̄ (with f̄ = 10 and ō = 2). Dashes indicate instances solved to
optimality within the time limit.

Table 7 shows that B efficiently solves all instances with ns = s̄ = 4 and ō = 2, requiring less than 0.39
seconds on average. In contrast, Table 8 reveals that B takes significantly longer—an average of 35.42
seconds—to solve instances with ns = 8, s̄ = 4, and ō = 2. Moreover, Table 7 demonstrates that B can
handle most instances when ns = s̄ = 6. However, as ns increases, the number of scenarios and decision
variables grows exponentially, which drastically impacts B’s ability to solve instances, even with s̄ ≤ 6. This
limitation highlights scenarios where L is likely to outperform B.

E Scalability Analysis of SAA

This section provides an extensive analysis of the scalability of SAA across various parameter settings and
synthetic instances.
SAA delivers asymptotically optimal allocations as the number of scenarios nc grows, but at the expense of
sharply increasing run-time. Here, we quantify the trade-off between solution quality and computational
effort when solving SAA with BARON. We generate 10 problem instances (see Section 7.1) for ns ∈ {15, 50}.
Each instance is then solved via SAA with s̄ = 6, f̄ = 10, ō ∈ {1, 2, 3}, and nc ∈ {500, 1, 000, 2, 500, 5, 000}.
All optimal allocations are then post-evaluated exactly to obtain both the expected logarithmic growth of
wealth and its standard deviation.
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Table 9 reports, for each configuration (ns, nc, ō), the average value of E(ln (W (f))) across the 10 instances;
values in parentheses indicate in how many instances the log-return was strictly positive. A “—” denotes
that BARON failed to find any profitable allocation.

ns
nc

ō 1 2 3

15
500 0.061 0.063 0.057 (7/10)

1,000 0.0693 0.068 0.031 (2/10)
2,500 0.075 0.066 (9/10) —
5,000 0.070 — —

50
500 0.071 — —

1,000 0.096 — —
2,500 0.104 (8/10) — —
5,000 0.091(8/10) — —

Table 9: Performance metrics for SAA with ns single-options bets across varying nc and ō.

Two key patterns emerge from Table 9:

1. Solver breakdown for large models: When ō ≥ 2, most instances fail to solve due to the
combinatorial explosion in parlay options.

2. Diminishing returns as nc grows: Even with ō = 1, the average log-wealth growth slightly
declines as nc increases—reflecting BARON’s struggles on very large scenario sets (it fails on two
instances at nc = 2, 500 and ns = 50).

Since every real-world instance contains at least 49 single-option bets, the results in Table 9 justify our focus
on ō = 1 and nc = 1,000 for SAA in Section 7.2.
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