

The Madness of Multiple Entries in March Madness

Jeff Decary¹, David Bergman¹, Carlos Cardonha¹, Jason Imbrogno², Andrea Lodi³

March Madness

- College basketball end-of-season tournament
- 64-teams single-elimination tournament
 - 4 regions of 16 teams
 - Teams ranked from 1 to 16
- In 2023, AGA estimated that 68 million American spent \$15.5 billion on March Madness²
- In 2014, Warren Buffet \$1 billion for a perfect bracket³

March Madness Bracket 2024¹

¹NCAA(2024) - Latest bracket, schedule and scores for 2024 NCAA men's tournament. URL: https://www.ncaa.com/brackets/print/basketball-men/d1/2024

https://www.americangaming.org/new/68-million-americans-to-wager-on-march-madness/

²American Gaming Association (2023) - 68 Million Americans to Wager on March Madness. URL:

³Forbes(2014) - Warren Buffett Offers \$1 Billion for Perfect March Madness Bracket. URL:

Step 1: Enter Contest

Pay entry cost

Step 1: Enter Contest

Pay entry cost

Step 2: Make Selections

- Select the winner for all games in the tournament
- Selection must be consistent across round

Step 1: Enter Contest

Pay entry cost

Step 2: Make Selections

- Select the winner for all games in the tournament
- Selection must be consistent across round

Step 3: Observe Outcomes

• Score points for every correct prediction

Round	Scoring System	
1	1 point	
2	2 points	
3	4 points	2 ^{round-1}
4	8 points	Max Score 192
5	16 points	
6	32 points	

Step 1: Enter Contest

Pay entry cost

Step 2: Make Selections

- Select the winner for all games in the tournament
- Selection must be consistent across round

Step 3: Observe Outcomes

Score points for every correct prediction

Step 4: Payoff Structure

- Entries are ranked based on the score
- Receive payoff according to the ranking

Rank	Payoff Structure	
1st	\$1,000,000 (80%)	
2nd	\$50,000 (4%)	
3rd	\$20,000 (1.6%)	
4th	\$10,000 (0.8%)	
1000th	\$100 (0.012%)	

Outline

- Literature review
- Strategy and research question
- Methodology
- Results
- Conclusion

- March Madness and the office pool³
 - o Dynamic Programming algorithm that maximizes the expected score of a single entry
- Optimal Strategies for sports betting pool⁴
 - Crowd avoidance is often a more profitable strategy

- Maximizing expected score
 - Surviving a National Football League survivor pool⁵:
 - Picking winners in daily fantasy sports using integer programming⁶
 - Optimizing the expected maximum of two linear functions defined on a multivariate Gaussian distribution⁷
 - Picking winners: Diversification through portfolio optimization⁸
- Maximizing Expected Payoff
 - \circ How to play strategically in fantasy sports (and win)⁹

 $5\,Bergman\,D., Imbrogno\,J.\,(2017)\,Surviving\,a\,National\,Football\,League\,survivor\,pool.\,Operations\,Research\,65 (5):\,1343-1354.$

6 Hunter, D. S., Vielma, J. P., & Zaman, T. (2016). Picking winners in daily fantasy sports using integer programming. arXiv preprint arXiv:1604.01455.

7 Bergman, D., Cardonha, C., Imbrogno, J., & Lozano, L. (2023). Optimizing the expected maximum of two linear functions defined on a multivariate Gaussian distribution. INFORMS Journal on Computing, 35(2), 304-317.

8 Liu, J., Liu, C., & Teo, C. P. (2023). Picking winners: Diversification through portfolio optimization. Production and Operations Management.

Select an optimal collection of entries that maximizes the expected score of the maximum scoring entry Strategy and Research Question

Notations

• Let **3** be the collection of all feasible tournaments indexed by O

- Let B be the collection of all feasible tournaments indexed by O
- Let $E \in \{0,1\}^{|\mathscr{T}| \times G}$ denote an entry with $E_{t,g} = 1$ if and only if team t is selected to win game g
 - a. Only 1 team chosen per game g
 - b. A team must have been selected in every round prior to the round of game g

Bracket Feasibility Constraints

- Let B be the collection of all feasible tournaments indexed by O
- Let $E \in \{0,1\}^{|\mathscr{F}| \times G}$ denote an entry with $E_{t,g} = 1$ if and only if team t is selected to win game g
 - a. Only 1 team chosen per game g
 - b. A team must have been selected in every round prior to the round of game g

Bracket Feasibility Constraints

Let S(E) be the random variable representing the score of entry E

- Let B be the collection of all feasible tournaments indexed by O
- Let $E \in \{0,1\}^{|\mathscr{F}| \times G}$ denote an entry with $E_{t,g} = 1$ if and only if team t is selected to win game g
 - a. Only 1 team chosen per game g
 - b. A team must have been selected in every round prior to the round of game g

Bracket Feasibility Constraints

- Let S(E) be the random variable representing the score of entry E
- Let S(E,O) be the score obtained by entry E when outcome O is observed

- Let B be the collection of all feasible tournaments indexed by O
- Let $E \in \{0,1\}^{|\mathscr{F}| \times G}$ denote an entry with $E_{t,g} = 1$ if and only if team t is selected to win game g
 - a. Only 1 team chosen per game g
 - b. A team must have been selected in every round prior to the round of game g

Bracket Feasibility Constraints

- Let S(E) be the random variable representing the score of entry E
- Let S(E,O) be the score obtained by entry E when outcome O is observed
- Let & be the collection of entries

Winning Probability Matrix: P $(P_{AB}=1-P_{BA})$

	A	В	C	D
A	-	$P_{A,B}^{ m team}$	$P_{A,C}^{ m team}$	$P_{A,D}^{ m team}$
В	$P_{B,A}^{ m team}$	73-	$P_{B,C}^{\mathrm{team}}$	$P_{B,D}^{ m team}$
C	$P_{C,A}^{ m team}$	$P_{C,B}^{ m team}$		$P_{C,D}^{ m team}$
D	$P_{D,A}^{\mathrm{team}}$	$P_{D,B}^{\mathrm{team}}$	$P_{D,C}^{ m team}$	-

Bracket Structure

Points Structure

Round	Scoring System		
1	1 point		
2	2 points		
3	4 points		
4	8 points		
5	16 points		
6	32 points		

Multiple Entries Betting Pools

Select an optimal collection of entries that maximizes the expected score of the maximum scoring entry

$$S(\mathcal{E}) := \max_{E \in \mathcal{E}} S(\{E\})$$

$$\max_{\mathcal{E} \subseteq \mathcal{B} : |\mathcal{E}| = e} \mathbb{E}[S(\mathcal{E})]$$

Select an optimal collection of entries that maximizes the expected score of the maximum scoring entry

Research Question: How does this strategy compares in performance against the betting strategies employed by elite sports bettors?

Calculating the Expected Value of Single Entry

• The expected score¹ of any single-entry E is: $\mathbb{E}[S(E)] \coloneqq \sum_{g \in \mathcal{G}} \sum_{t \in \mathcal{T}} 2^{r(g)-1} \cdot E_{t,g} \cdot P_{t,g}^{\text{game}}$

Number of points for a correct prediction for game g

E_{t,g}=1 if team t is selected to win game g

Probability that team t wins game g

Calculating the Expected Value for Multiple Entries

- The expected score of any two-entry $\mathcal{E} = \{E^1, E^2\}$ is: $\mathbb{E}[S(\mathcal{E})] = \sum_{O \in \mathcal{B}} P_O \max \left(s(E^1, O), s(E^2, O)\right)$
- Theorem 1: The expected score of the maximum scoring entry can be computed in time: $O\left(t \cdot (t \cdot \log_2(t))^{2e+1}\right)$

Calculating the Expected Value Multiple Entries

Sample Average Approximation (SAA)

$$\widehat{\mathbb{E}\left[S(\mathcal{E})\right]} = \frac{1}{|O_{\mathtt{Sim}}|} \sum_{O \in O_{\mathtt{Sim}}} \left(\max_{E \in \mathcal{E}} S(E, O) \right)$$

 $|O_{sim}|$ = 250 Simulations is enough

Structural Results for Multiple Entries Problem

- **Proposition 1:** The Function $\mathbb{E}[S(\mathcal{E})]$ is submodular function
- **Theorem 2:** With 0.5 probability for all matchups, any two disjoint brackets are optimal
- Remark 1: An entry with the highest single-entry expected score is not necessarily part of the optimal collection of two entries
- Remark 2: Optimal multiple entries may select the same winner of the tournament

MIP Formulation for Single Entry Problem

$$\begin{aligned} \max & \sum_{g \in \mathcal{G}} \sum_{t \in \mathcal{T}(g)} 2^{r(g)-1} \cdot x_{t,r(g)} \cdot P_{t,r(g)}^{\text{round}} \\ \text{s.t.} & \sum_{t \in \mathcal{T}(g)} x_{t,r(g)} = 1, & \forall g \in \mathcal{G} \\ x_{t,r} \leq x_{t,r-1}, & \forall t \in \mathcal{T}, r \in \mathcal{R} \setminus \{1\} \\ x_{t,r} \in \{0,1\}, & \forall t \in \mathcal{T}, r \in \mathcal{R}. \end{aligned}$$

Bracket Feasibility
Constraints

MIP Formulation for Multiple Entries Problem

$$\max \quad \frac{1}{|O_{\text{Sim}}|} \sum_{O \in O_{\text{Sim}}} \left(\max_{E \in \mathcal{E}} S(E, O) \right)$$

s.t.

Bracket Feasibility
Constraints

MIP Formulation for Multiple Entries Problem

$$\max \ \frac{1}{|O_{\mathtt{Sim}}|} \sum_{O \in O_{\mathtt{Sim}}} \left(\max_{E \in \mathcal{E}} S(E, O) \right) \\ \text{MIP} \\ \sum_{t \in T(g)} x_{t,r(g),e} = 1 \\ \sum_{t \in T(g)} x_{t,r-1,e} \\ \sum_{g \in g} 2^{r(g)-1} \cdot W_{t,g}^w \cdot x_{t,r(g),e} \ \forall w \in [w], \forall e \in [e] \\ \sum_{e \in [e]} z_{w,e} = 1 \\ \sum_{g \in g} z_{w,e} = 1 \\ \sum_{g \in g} x_{w,e} = 1 \\ \sum_{g \in$$

DraftKings Contest

- DraftKings Contest
- Only available for the best sport bettors
- \$100/entry (max 100 entries)
- 10,000 randomly generated brackets are used to evaluate solutions
- \$1,000,000 to the winner

Entries	1	2	3	4-5	6-10	11-25	26-50	51-99	100	Total	
Number of Contestants	7,756	790	179	122	72	33	6	3	6	12,605	

DraftKings Contest (Using 538 Probability Matrix)

DraftKings Contest (Using 538 Probability Matrix)

(538)

Conclusion

- March Madness Challenge
- Maximize the expected score of the maximum scoring entry
 - 250 simulations provide good estimate of the expected score
 - SAA is the best for a small number of entries
 - Structural results
 - Prop+ outperforms all algorithms for a large number of entries
- DraftKings contest
 - Highest expected score among all participants
 - 2.2% chance of winning using Prop+
 - Expected Profit of \$12,000

References

- NCAA(2023) Latest bracket, schedule and scores for 2023 NCAA men's tournament. URL https://www.ncaa.com/news/basketball-men/mml-official-bracket/2023-04-04
- Kaplan, E. H., & Garstka, S. J. (2001). March madness and the office pool. Management Science, 47(3), 369-382.
- Clair, B., & Letscher, D. (2007). Optimal strategies for sports betting pools. Operations Research, 55(6), 1163-1177.
- Bergman D., Imbrogno J. (2017) Surviving a National Football League survivor pool. Operations Research 65(5): 1343–1354.
- Hunter, D. S., Vielma, J. P., & Zaman, T. (2016). Picking winners in daily fantasy sports using integer programming. arXiv preprint arXiv:1604.01455.
- Bergman, D., Cardonha, C., Imbrogno, J., & Lozano, L. (2023). Optimizing the expected maximum of two linear functions defined on a multivariate Gaussian distribution. INFORMS Journal on Computing, 35(2), 304-317.
- Liu, J., Liu, C., & Teo, C. P. (2023). Picking winners: Diversification through portfolio optimization. Production and Operations Management.
- Haugh, M. B., & Singal, R. (2021) How to Play Fantasy Sports Strategically (and Win). Management Science 67(1), 72-92
- Nate Silver (2023). 2023 March Madness Predictions. URL: https://projects.fivethirtyeight.com/2023-march-madness-predictions/
- Jeff Sonas, Ryan Holbrook, Addison Howard, Anju Kandru. (2024). March Machine Learning Mania 2024. Kaggle.
 https://kaggle.com/competitions/march-machine-learning-mania-2024/leaderboard

Scan me

DraftKings Contest (Robustness Check)

(a) Empirical EMS (cbbdata)

(b) Empirical EMS (seed-based)

DraftKings Contest (Robustness Check)

(a) Empirical EMS (cbbdata)

(b) Victory Probability (seed-based)

Optimal Expected Score Prop+

	TEAM	REGION	POWER RATING	1ST	2ND	SWEET 16	ELITE EIGHT	FINAL FOUR	CHAMP.	WIN
装	Houston 1	Midwest	93.2	1	97%	74%	59%	41%	31%	22%
A	Alabama 1	South	92.6	✓	99%	82%	65%	45%	30%	16%
*	Texas 2	Midwest	90.1	✓	92%	65%	45%	22%	14%	8%
P	Purdue 1	East	89.5	✓	98%	69%	41%	25%	12%	5%
£	Kansas 1	West	89.6	1	98%	66%	39%	20%	9%	5%
(%	Gonzaga 3	West	89.9	✓	92%	64%	38%	22%	9%	5%
A	Arizona 2	South	89.0	✓	94%	67%	35%	15%	8%	4%
Ucla	UCLA 2	West	88.3	1	95%	70%	37%	21%	8%	3%
0	UConn 4	West	89.2	1	85%	65%	31%	15%	6%	3%
10	Marquette 2	East	87.6	1	89%	58%	34%	16%	7%	3%
B	Baylor 3	South	87.1	✓	89%	45%	24%	10%	6%	3%
8	Creighton 6	South	87.6	1	79%	46%	26%	11%	6%	2%
n	Duke 5	East	87.1	✓	82%	46%	23%	13%	5%	2%
T	Tennessee 4	East	86.9	1	87%	46%	22%	12%	5%	2%
¥	Kentucky 6	East	86.0	1	66%	45%	23%	10%	4%	1%
ψ	Indiana 4	Midwest	85.8	1	74%	47%	15%	7%	3%	1%
ДÃ	Texas A&M 7	Midwest	85.1	1	60%	22%	12%	5%	2%	1%
TCD	TCU 6	West	85.4	✓	68%	26%	12%	5%	2%	1%
₽-	SDSU 5	South	86.0	1	67%	39%	10%	5%	2%	0.8%

